Why Possibly Language Evolved

Peter J. Richerson & Robert Boyd

Human language has no close parallels in other systems of animal communication. Yet it is an important part of the cultural adaptation that serves to make humans an exceedingly successful species. In the past 20 years, a diverse set of evolutionary scholars have tried to answer the question of how language evolved in our species and why it is unique to us. They have converged on the idea that the cultural and innate aspects of language were tightly linked in a process of gene-culture coevolution. They differ widely about the details of the process, particularly over the division of labor between genes and culture in the coevolutionary process. Why is language restricted to humans given that communication seems to be so useful? A plausible answer is that language is part of human cooperation. Why did the coevolutionary process come to rest leaving impressive cultural diversity in human languages? A plausible answer is that language diversity functions to limit communication between people who cannot freely trust one another or where even truthful communications from others would result in maladaptive behavior on the part of listeners.

Keywords: cultural evolution; evolution of cooperation and language; evolution of linguistic diversity

1. Introduction

Humans are highly unusual animals in depending upon social transmission from others for acquiring most of their adaptations (Boyd & Richerson 2005, Richerson & Boyd 2005), including the specific languages they speak. Language is essential to our complex social life, revolving as it does around institutions that are transmitted by language and operated by oratory. The evolution of language as a human capacity, and of languages themselves, are subjects of a large and growing literature. Many important and controversial issues are under examination including the roles of cultural and genetic evolution in the process and the role of general purpose versus language specific innate cognitive resources. Culture itself evolves by processes that are something like the evolution of genes, but which are different in many important details. In the case of language, the cultural evolutionary processes by which
languages change over time are tolerably well understood from the work of socio-linguists (Labov 1994, Labov 2001) and historical linguists (Deutscher 2005). The application of formal phylogenetic methods borrowed from evolutionary biology to the reconstruction of language evolution is an active area of research (Gray et al. 2009, Pagel 2009). We have reasonable general models of cultural evolution (Henrich & McElreath 2008). We have good models of the coevolutionary process (Richerson & Boyd 1989, Feldman & Laland 1996).

The coevolutionary approach to the evolution of language was first articulated by Pinker & Bloom (1990). They imagine that the first step in the evolution of human language would be a rudimentary culturally transmitted set of signals. If having such signals were adaptively advantageous, selection might fall in genes to expand the capacity to acquire such signals. So long as a higher capacity cultural communication system was favored, cognitive modifications to more efficiently acquire explicitly linguistic features like symbolic words and grammar would be favored as the system passed some threshold of complexity. Eventually, languages with a rather large vocabulary and complex syntax and/or morphology became cognitively possible. Coevolution assumes that some relatively easy and gradual path was available such that the evolution of language could proceed from simple vocal and gestural communications to human language by some combination of small cultural and innate steps, at least after some key cognitive precursors had evolved (Origgi & Sperber 2000). See Donald (1991), Deacon (1997), Tomasello (2008), and Progovac (this volume) on how language might have evolved gradually.

Pinker (2003) continues to argue that humans were equipped by the coevolutionary process with specialized innate mechanisms to manage language acquisition, production, and comprehension. Others have argued that more general cognitive resources, perhaps especially resources shared by other domains of culture, can underpin language. We have formal models of how language specific features like compositionality might evolve by cultural evolution by languages adapting to be learnable using general cognitive resources (de Boer 2000, Munroe & Cangelosi 2002, Smith & Kirby 2008). Steels (2009) has simulated how language might be invented using sufficiently powerful general cognitive resources using laboratory robots. Briscoe (2009) argues that even if general cognitive resources are sufficient to initiate simple languages, coevolution would have produced at least some language specific biases and constraints to make language more efficiently learnable. Of course, some genetic changes must have accompanied the evolution of language since even chimpanzees and bonobos when raised in a linguistic environment develop, at best, a rudimentary form of language (Savage-Rumbaugh & Lewin 1994). Tomasello (2008) emphasizes the idea of a cognitive complex of shared attention, collaborative activities, social motivation and cultural evolution that is important for language and technical and social skills. Bloom (2000) emphasized the cognitive strategies used to learn words. Dehaene’s (2009) interesting work on reading shows how visual circuits evolved to process normal visual stimuli can be ‘recycled’ to transmit linguistic information in the visual mode, providing a possible
Why Possibly Language Evolved

model for earlier coevolutionary events. Nettle (2007) raises the possibility that this sort of coevolution still goes on. Subtle differences in innate capacities may have coevolved with different language families; for example, populations with a long history of using tone to make linguistic distinctions may find it slightly easier to learn and use tones than populations not so exposed (Dediu & Ladd 2007). Good evidence to this effect would suggest that the coevolutionary process indeed affects language evolution. Thus, while a consensus exists that human language evolved by a coevolutionary scenario, evolutionary linguists differ greatly on the details.

This bare-bones account leaves many unanswered questions. Two seem fundamental to us. First, why is human language unique? Not only primates but also parrots and songbirds have preadaptations for vocal communication and vocal imitation (Baptista & Trail 1992, Pepperberg 2000). Human language is widely counted as our most spectacular adaptation, the very adaptation that made us human, and the adaptation that constitutes the latest ‘major transition of life’ (Maynard Smith & Szathmáry 1995). Maynard Smith & Szathmáry’s other major transitions happened long ago; why was this one so tardy? Many species would seem to have rudimentary communication systems that could fall under the influence of the coevolutionary mechanism outlined above. Under what scenario might humans, but not other species, come under selection for an advanced inter-individual communication system?

The functional hallmark of human language is to combine a large vocabulary of meaningful words into utterances using syntactic rules that convey much information about how the string of words in an utterance modify each other’s meanings. How might evolutionary processes favor the evolution of a high information volume communication system in humans? One possible answer is that humans were the first to acquire some sort of cognitive breakthrough. For example, Sperber (2000) is concerned with whether ‘metarepresentation’ (the ability to represent the thoughts of others) is a precondition for the evolution of language and Donald (2001) with the issue of whether human cultural capacities had to be fairly advanced before language could arise. In contrast, we suggest that syntax and semantics are the easy part of the evolution of language. The hard part is to figure out how humans could make use of language. Less provocatively, given innate cognitive adaptations of some kind were necessary for language, to use language, hearers must trust speakers. If they did not, they would not listen, and language would collapse. Grice (1975: 45) noted that to function conversation had to conform to a cooperative principle. But evolutionary biology teaches us that trust between individuals evolves with difficulty. Hence, the difficulty from the evolutionary perspective is how trust can evolve. If trust evolves, the cognitive bases of complex communication might evolve without serious impediment. The problem of cooperation is central to a number of accounts of the evolution human language (e.g., Hurford 2007, Tomasello 2008).

Second, how can we account for the large role of culture in language? Noam Chomsky has recently advocated a minimalist approach to the innate components of language (Chomsky 1995, 2005, Hauser et al. 2002). Minimalists themselves debate
about exactly what is innate, what is perhaps innate but not specific to language, and what can be off-loaded to the cultural system (e.g., Arsenijević & Hinzen, this volume). Generative grammarians who pursued the idea that surface diversity of grammars could be rigorously tied to a parsimonious set of principles and parameters seem not to have succeeded (Newmeyer 2005). Agreeing with this assessment, sociolinguists and historical linguists propose mechanisms, based on observations about how language actually changes generation by generation, that seem to account for how a vast diversity of languages can evolve culturally (Guy 1996, Deutscher 2005). Whatever is innate is very deep and hardly constrains the design space of syntax and lexicon (Progovac, this volume).

We can imagine that language learning and subsequent communication would be more efficient if more of it was innate. This is seemingly the logic of the much mooted massive modularity hypothesis for cognitive architecture generally (Tooby & Cosmides 1989, Sterelny 2003). For example, we could imagine a communication system that is largely specified innately (Sampson 2002). Such a system might superficially resemble a family of languages like the Romance Languages. Most of the grammar and much of the vocabulary would be quite similar across all the world’s languages, yet a ‘Castilian’ child adopted by ‘Catalans’ might have considerable difficulty learning ‘Catalan’ because of having innate adaptations to speak ‘Castilian’. Or perhaps everyone would just innately speak ‘Catalan’, but with minor culturally determined ‘Valencian’ and ‘Barcelonan’ dialects. This scenario is clearly counterfactual. Languages seem to be much more culturally diverse than they need to be for communicative efficiency. Students of the structural variation in human languages keep discovering structural principles as the number of well-studied languages grows to the point of questioning whether there are any language universals at all (Evans & Levinson 2009). Indeed, their balkanization into thousands of mutually unintelligible languages and tens of thousands mutually difficult to understand dialects is odd if selection fell only on communicative efficiency. Wouldn’t communicative efficiency be maximized if we innately spoke a common regular language like Esperanto? We need to ask if language variation is somehow adaptive.

2. Why Possibly Language is Restricted to Humans

Language is not the only rich communication system in nature. The cells in our body use nerves and hormones to coordinate our exceedingly complex development, physiology and behavior. For example, the development of complex organisms proceeds by intercellular signaling such that each cell eventually matures in the type appropriate for the tissue it finds itself in. The famous FOXP2 gene codes for a regulatory protein active in the development of all vertebrates. The common human variant differs at two amino acids from that in chimpanzees and a particular rare variant causes a specific language impairment in one well-studied family. However,
FOXP2 is expressed in many tissues during development in humans. Preliminary broad scale scans suggest that it may have hundreds of targets in a variety of tissues (Fisher & Scharff 2009). If so, one might imagine that genes exhibit the property of compositionality. FOXP2 is like a ‘word’ with a particular meaning that can participate in many developmental ‘sentences’. We are not aware of any careful analysis intercellular communication systems for formal analogies to language, but as we learn more about how these systems work, they might be grist for comparative analysis. Interestingly, biologists have described many mechanisms by which rich internal communication systems are ‘policed’ to ensure a community of interest, safeguarding the basis of communication (Frank 2003). Such policing is necessary because pressure from deceptive entities, like cancer cells, to reproduce at the expense of the collective always exists.

The mathematical theory of animal communication was pioneered by John Maynard Smith (1976, 1994) and has recently been applied to human language by Lachman et al. (2001) and Lachmann & Bergstrom (2001, 2004). The basic problem is that individuals do not normally have enough commonality of interests to make honest communication possible. The relationship between individuals is normally competitive, and any communication thus tends to be self-interested. However, this self-interestedness means that recipients of communications cannot trust the talk of communicators, so free communication does not evolve. Thus, animal communication is normally extremely impoverished. Animal communications are costly signals, cases in which deceptive signals can be punished cheaply, or cases in which the ‘communication’ is an unmodifiable index of some attribute, as size is an index of strength. Peacocks’ tails and the red deer stag’s adaptations for male-male combat are two stock examples of costly signals. These features advertise the size and health status of males, the quality of their genes, and their fighting prowess to others in the vicinity in order to attract females and intimidate competing males. These signals are trustworthy indicators of male quality because only large, healthy males can carry a large display of gaudy feathers or develop the muscles and antlers to be competitive in fights between males. A male that produced deceptively large but weak antlers would risk injury if he had his bluff called by males with well-constructed antlers. A population might start with cheap, accurate signals of genetic quality or fighting prowess, but such communication will be undermined by mutant males that use resources to fake the signal, resulting in an arms race that ends up with an expensive unfakable signal. At an evolutionary equilibrium, the signal will be so costly that inferior males simply have insufficient resources to generate a fake signal of quality. Such a system has such a high overhead that it can produce only a handful of critical messages. Maynard Smith & Harper (2003) discuss some situations in which signals do not have to be costly subject to punishment. The most important one relevant to language is that in some situations individuals have no conflicts of interest. For example a foreign motorist might ask us to explain a traffic rule. We would have an interest in providing the correct answer, at least if the foreigner is driving on the same road, because having the correct answer will make her less likely to hit us.
Lachmann & Bergstrom show that a combinatorial communication system that relies on rules to interpret a sentence composed of words is especially vulnerable to deceptive messages and is therefore requires considerable cooperation to evolve. The value of a combinatorial communication system is that it permits limitless flexibility in the construction of messages using a finite number of words, but deceivers can use this flexibility to compose artful manipulative messages that recipients will interpret to the advantage of the signaler but to their own detriment. Merely policing the meanings of words and grammatical rules will not prevent lying. Thus, the theory tells us that rich combinatorial language-like systems evolve under a special handicap. This perhaps helps explain why language-like rich communication systems are of very restricted occurrence.

Human language is part of the extraordinary cooperation of humans with distantly related or unrelated people. The philosopher of language Paul Grice was the first person to note the centrality of cooperation in language, and many evolutionary linguists have concurred (Grice 1975; see also Sperber & Wilson 1995, Dessalles 1998, Knight 1998, Csibra & Gergely 2006, and Hurford 2007). Cooperation in language exists at two levels (Hurford 2007). First speakers must agree on common definitions of words and use the same grammatical rules if any communication is to take place at all. Second, language usage would collapse (or never arise in the first place) if speakers did not generally provide useful information to hearers, as the mathematical theory suggests. We take it that coordination on the meaning of words and grammatical rules is an easier evolutionary problem than the problem of maintaining high levels of truthfulness in the face of self-serving temptations. Because humans cooperate in large groups of distantly related and unrelated individuals, we both have a use for language — to organize our social life — and enough commonality of interest to support a rich, cheap, and trustworthy communication system (Nettle 2006, Tomasello 2008). We also police the system — telling a lie is a sin (Scott-Phillips 2008).

A number of evolutionary hypotheses are on the table to explain this cooperation (Richerson et al. 2003, Krebs 2008). One of these is the Tribal Social Instincts hypothesis (Richerson & Boyd 1999), which is a modernization of a hypothesis first proposed by Darwin (1874) in the Descent of Man. It proposes that human cooperation arose because human cultural variation is especially susceptible to selection at the level of the group. The ancestral groups that were relevant during the evolution of our social psychology were tribes, ethnolinguistic units ranging in size from a few hundred to a few thousand people. Normally, selection is strongest at the level of individuals, leading to competition between individuals for reproductive success. Groups of individuals can fall under strong enough selection to lead to within group cooperation, but the conditions are fairly stringent except when groups are small or closely related. Kin assortment leads to reduced genetic variation within groups and exaggerated variation between them, and group selection requires persistent genetic variation at the group level to work. The reasons that culture is unusually susceptible to group selection on a much larger scale than genetic kin groups are outlined in Richerson & Boyd (2005: 203–213) and more formally by
Why Possibly Language Evolved

Henrich (2004). The linguist reader should be warned that the evolution of cooperation literature is bedeviled by terminological claims masquerading as scientific ones. Recent examples include West et al. (2007) and Gardner & Grafen (2009).

The basic idea is that culture much more easily than genes preserves variation between large groups of unrelated or distantly related individuals. Culture evolves more rapidly than genes because culture is modified by learned innovations not just random mutation and because we can actively choose superior variants either by direct experimentation with variants or by rules of thumb like imitating the successful or prestigious. Preserving variation between groups requires that variation between groups has to evolve fast enough to mitigate the blending effects of migration. In genetic evolution, selection and drift are generally not able to maintain much variation between neighboring groups whereas cultural processes can. Bell et al. (2009) used the World Values Survey to estimate cultural variation between neighboring nations and compared these estimates to published estimates of genetic variation for the same nations. Mean cultural differences are more than ten times greater than genetic differences, and the cultural differences are probably underestimated. Many important differences between groups are institutions maintained by social sanctions (Herrmann et al. 2008). If punishment keeps deviants rare, the differences between neighboring societies can be virtually categorical. We will shortly consider a linguistic mechanism that limits mixing between groups, helping to preserve between group variation.

Innate elements of our social psychology — Darwin argued that sympathy and patriotism were among our ‘social instincts’ — would have evolved by gene-culture coevolution following the same logic outlined above for the language faculty. Language would have been an important element of the evolution of cooperation. Language is obviously a general purpose communication system that today we use to talk about practically everything. For the purpose of formulating hypotheses about the intertwined evolution of language and cooperation, we need to imagine what the main function(s) of protolanguage were near the beginning of the co-evolutionary sequence that eventually gave rise to our advanced capacity for language. To get an impression of what mimetic pre-linguistic but otherwise highly imitative hominins might have been able do with without language, Donald (1991) reviewed the literature on 19th century people deaf from birth (so-called then ‘deaf-mutes’). Deaf-from-birth people led surprisingly normal lives even when they acquired no language skills beyond simple ‘home signs’ they invented to communicate with family members. Most of them learned skills necessary to support themselves, typically a manual trade or farming, and some became prosperous. Many married and otherwise had relatively normal social lives. This evidence suggests, Donald argues, that humans might well have had a fairly advanced cultural system before the capacity for language evolved. Thus, cultural group selection might have selected for a measure of extra-familial altruism before the evolution of language even began.

However, we think it unlikely that social systems of the complexity that living hunter-gatherers operate could have functioned without language (see Dunbar 1996
for a slightly different version of this argument). The social life of even the simplest known hunter-gatherer societies, such as the San peoples of the Kalahari and the Shoshone of the North American Great Basin, was regulated by institutions, commonly known rules governing social behavior (Maryanski & Turner 1992). For example, the famous !Kung (Ju/'hoansi) San peoples have a complex tripartite kinship system that in effect makes everyone at least a fictive kin to everyone else, even if no genealogical connection is known (Lee 1986). They also have a ceremonial gift exchange system that cements ties of friendship with people living in distant camps (Wiessner 2002). A large number of the gift relationships are with distantly related people, especially on the part of successful hunters and their wives. Even these comparatively simple institutions are encoded, transmitted, and reinforced linguistically through stories, gossip, complaining and shaming (Wiessner 2005). In many cases, hunter-gatherer social institutions were not at all simple. The marriage systems of the societies in the Australian central desert were very elaborate, for example (Yengoyan 1968). One might imagine that the first steps toward human cooperation in large groups might have taken place before language, but it is hard to see complex institutions arising and being maintained across a large group without it.

The general proposition that human intelligence evolved for its social functions is sometimes called the social intelligence or Machiavellian intelligence hypothesis (Dunbar 1996, Whiten & Byrne 1997). It is often contrasted with an ecological intelligence hypothesis. We think that the social intelligence hypothesis as usually stated does not give sufficient attention to the fact that hunter-gatherer subsistence was an intensely social enterprise (Steward 1955). In humans, social intelligence is fundamental to our ecological adaptation. The human hunting and gathering adaptation depended substantially upon cooperative big game hunting, especially during the late Pleistocene (Stiner 2002). Hunting probably provided the nutrients necessary to grow and sustain our very expensive brain (Aiello & Wheeler 1995, Kaplan et al. 2000). Many of the skills involved in hunting could perhaps have been learned by linguistic imitation — all those skills for which a picture is worth a thousand words. However, at least one skill, tracking, is practiced in living hunter-gatherers as a sophisticated collective hypothesis testing enterprise in which verbal discussion is essential (see also Liebenberg 1990, Guthrie 2005). Trackers need to have natural-historical knowledge that often outruns that of the modern naturalists who have interacted with them (Blurton-Jones & Konner 1976) and would no doubt be hard to transmit without language.

The evolution of human intelligence might well have been driven directly by recent climate deterioration. Some theoretical and empirical evidence supports the idea that the evolution of complex, cumulatively improvable culture, including languages, was driven directly by increasingly variable environments over the last few million years (Calvin 2002, Richerson et al. 2005). Simple evolutionary models of culture suggest that the main adaptive advantage of a costly system of social learning is adaptation to environments with rapid, high amplitude variation (Boyd & Richerson 1985). If environmental variation is modest or if change is slow, genetic
Why Possibly Language Evolved

3. Why is Language Weakly Constrained by Genes?

The number and diversity of human languages is stunning, akin to the species diversity of rain forest trees and coral reef fishes (Nettle 1999). The total number of living languages in the world is currently about 7,000 (http://www.ethnologue.com), about 1,000 of which are spoken on New Guinea. Unlike species that typically differ in functionally important ways, languages are largely functionally equivalent.

Several authors have suggested that the function of language and similar symbolic differences is to mark the boundaries of social groups (Labov 1973, Nettle & Dunbar 1997, Livingstone & Fyfe 1999, Nettle 1999, and Livingstone 2002). They serve to identify those who are ‘like us’ and those who belong to other groups. Language differences function to limit communication and hence the spread of ideas from one community to another. People from other groups are liable to tell you self-serving lies. They are also likely to tell you things that are useless in the physical and social ecology in which you live. Human cultures are ecologically a lot like species. They typically have different social institutions and often different ways of making a living (Barth 1969). Imitating people from a different culture may often be a bad thing to do (Gil-White 2005). Language diversity perhaps limits communication adaptively.
Mathematical models support this line of reasoning. Boyd & Richerson (1987) studied a cultural evolutionary model in which two populations lived in different environments. A different value of a quantitative adaptive character was optimal in each environment and there was a generic neutral marker character, also quantitative. (Quantitative characters are behaviors that can be measured on a continuous scale, such as the location of a vowel in formant space). Individuals migrated between the two populations, tending to homogenize them at some intermediate value of the adaptive character not well adapted to either environment. Countering mixing, juveniles were assumed to have a tendency to adopt the value of the adaptive character from people whose value of the neutral marker, say their dialect, resembled theirs. They also prefer to imitate people who are successful. In the model, the marker characters in the two populations diverged, generating a correlation between the marker and the adaptive trait. At equilibrium, the mean value of the adaptive trait was at the optimum in both environments. The preference for imitating people like you with regard to a neutral marker trait in the presence of a strong correlation between adaptive and marker characters set up an adaptive barrier limiting the flow of wrong ideas from the other environment even in the face of rather strong physical migration.

McElreath et al. (2003) studied a conceptually similar model but this time using discrete characters. They also modeled the environment as a social game of coordination rather than a different physical environment. Games of coordination are ones in which high payoffs depend upon matching the behavior of others. Languages are a massive game of coordination. Unless our grammar and lexicon at least roughly match those with whom we wish to communicate, we will fail. Once again migration tends to homogenize the populations but a correlation arises between the neutral marker characters and the move in the game of coordination. Eventually people in the two populations usually play with partners that correctly match their coordination move. Because language can evolve differences so rapidly, it can evolve to calibrate our discrimination against outsiders quite sensitively. I may perfectly well understand someone whose dialect differs only modestly from mine, but I may still distrust them. On the other hand, someone speaking a strange dialect is offering me something that I can judge independently to be highly useful, I might adopt it despite a general suspicion of such folks. Sociolinguists tell us that we make many social decisions based on subtle linguistic differences. Those who study the diffusion of innovations tell us that we can overcome linguistic barriers to the diffusion of ideas and techniques if we are sufficiently motivated. The models are very crude by comparison, but they lend credence to the adaptive importance of linguistic diversity but also to the flexibility of linguistic boundaries. Efferson et al. (2008) verified that symbolic markers could evolve in laboratory microsocieties.

Interestingly, in McElreath et al.’s (2003) model, symbolic differentiation cannot arise in the first instance to mark cooperators. (See Nettle & Dunbar (1997) for a model with different results.) The reason is that carrying a mark that identifies an individual as a cooperator favors the evolution of selfish non-cooperators who carry
the mark and victimize true cooperators. Games of coordination and ordinary adaptive differences do not contain a dilemma of cooperation and are not vulnerable to this problem. What symbolic differences, first among them linguistic differences, will do is inhibit communication between groups, tending to preserve variation between groups. Selection between such groups can then lead to ingroup cooperation and distrust of outgroups (Richerson & Boyd 2005).

These model results are in rough accord with the literature on ethnicity (LeVine & Campbell 1972). People speaking different languages may not normally communicate much, but, unlike biological species, they are not completely informationally isolated from one another. Ethnographic data from small-scale societies suggest that linguistic and other symbolic boundaries often mark the limits of trust and cooperation. The role of ethnicity in conflict in modern societies is well known (e.g., Horowitz 2001).

The role of language as a symbolic marker of group boundaries has been well studied by sociolinguists (Labov 1980, 2001). Labov and other sociolinguists discovered that subtle phonological changes grow up rapidly wherever social fault lines arise. For example, on Martha’s Vineyard, a rural island off the coast of Massachusetts, the influx of summer tourists caused Vineyarders’ speech to diverge detectably from the standard New England dialect. People seem to condition their behavior on the dialects that others speak. It is not hard to project the sociolinguistic mechanisms that cause small-scale generation to generation changes in languages to the multigeneration scale on which new dialects, new languages, and eventually new language families evolve (Nettle 1999, Deutscher 2005). Among the fields of language change that strike us as well studied include grammaticalization, the process by which conventional lexical constructions come to have syntactic functions (Hopper & Traugott 2003) and the way in which languages in contact influence each other (Thomason 2001).

4. Conclusion

The theory of gene-culture coevolution has provided a useful framework for analyzing the evolution of language. Indeed, we are not aware of any contemporary students of language evolution who do not subscribe to some form of coevolutionary argument. Evolutionary linguists do differ about the division of labor between genes and culture that they propose. Some authors such as Tomasello (2008) and Kirby et al. (2009) posit a large role for culture in adapting language to pre-linguistic cognitive capacities or ones shared with other aspects of culture. Others, for example Pinker (2003), argue for much language specific innate cognitive adaptation. Evolutionists could contribute to this debate if it were clear what the design constraints on cognitive architecture are. The idea that specialized cognitive architecture is highly efficient is appealing, but the relatively general heuristics like joint attention that make cultural transmission efficient are impressive as well. The detailed answer
to the division of labor question is, we think, largely a matter for neurobiologists to unravel. Evolutionary considerations can provide a theory for the level of trust and cooperation necessary to make cheap, accurate, and abundant communication between humans possible and an explanation for why at least some cultural variation remains in language. In conjunction with data from paleoanthropology, paleoclimatology, and paleoecology we can produce hypotheses about when language probably evolved and why it evolved only in the human lineage. Without doubt, all of these are very difficult questions. We do not flatter ourselves that the specific proposals here will survive challenges of new data, for example data on the history of the genes that underpin language. We are more confident that the form of the coevolutionary analysis is correct.

References


Arsenijević, Boban & Wolfram Hinzen. This volume. Recursion as a human universal and as a primitive.


Dediu, Dan & D. Robert Ladd. 2007. Linguistic tone is related to the population frequency of the adaptive haplogroups of two brain size genes, ASPM and Microcephalin. Proceedings of the National Academy Sciences USA 104, 10944–10949.


Cambridge: Cambridge University Press.
Why Possibly Language Evolved


Peter J. Richerson
University of California, Davis
Department of Environmental Science & Policy
One Shields Avenue
Davis, CA 95616
USA
pjricherson@ucdavis.edu

Robert Boyd
University of California, Los Angeles
Department of Anthropology
375 Portola Place
Los Angeles, CA 90095
USA
rboyd@anthro.ucla.edu