Is Word Order Asymmetry Mathematically Expressible?

Koji Arikawa

Abstract


The computational procedure for human natural language (CHL) shows an asymmetry in unmarked orders for S, O, and V. Following Lyle Jenkins, it is speculated that the asymmetry is expressible as a group-theoretical factor (included in Chomsky’s third factor): “[W]ord order types would be the (asymmetric) stable solutions of the symmetric still-to-be-discovered ‘equations’ governing word order distribution”. A possible “symmetric equation” is a linear transformation f(x) = y, where function f is a set of merge operations (transformations) expressed as a set of symmetric transformations of an equilateral triangle, x is the universal base vP input expressed as the identity triangle, and y is a mapped output tree expressed as an output triangle that preserves symmetry. Although the symmetric group S3 of order 3! = 6 is too simple, this very simplicity is the reason that in the present work cost differences are considered among the six symmetric operations of S3. This article attempts to pose a set of feasible questions for future research.

Keywords


cost; economy; equilibrium; Galois group; geometry; symmetry; third factor; transformation; unmarked word order

Full Text:

PDF

Comments on this article

View all comments




Copyright (c)